Benha University
Faculty of Engineering at Shoubra
Electrical Engineering Department

Electromagnetic Fundamentals $2{ }^{\text {nd }}$ Year Communications
(2016-2017)

Sheet 8

1 Given $\bar{E}=2 x \bar{a}_{x}-4 y \bar{a}_{y} \mathrm{~V} / \mathrm{m}$, find the work done in moving point charge +2 C
(a) from $(2,0,0) \mathrm{m}$ to $(0,0,0)$ and then from $(0,0,0)$ to $(0,2,0)$
(b) from $(2,0,0)$ to $(0,2,0)$ along the straight line joining the two points
(c) show the conservative property

$$
[\mathrm{W}=24 \mu \mathrm{~J}]
$$

2 For a line charge $\rho_{L}=0.5 \times 10^{-9} \mathrm{C} / \mathrm{m}$ on the z-axis, find $V_{A B}$ where A is $(2 \mathrm{~m}, \pi / 2,0)$ and B is $(4 m, \pi, 5 m)$

$$
\left[V_{A B}=6.23 V\right]
$$

(3 40 nC of charge is uniformly distributed around a circular ring of radius $r=2 \mathrm{~m}$.find the potential at a point on the axis 5 m from the plane of the ring. Compare with the result where all charge is at the origin in the form of a point charge

$$
\left[\begin{array}{c}
V=66.9 \mathrm{~V} \\
V=72 \mathrm{~V}
\end{array}\right]
$$

4 For problem 3 show that $V=\frac{\rho_{L} r}{2 \epsilon \sqrt{z^{2}+r^{2}}}$ and then find an expression for the electric field
5 If $V=\frac{\sin \theta}{r^{2}} \mathrm{~V}$, Find
$\begin{array}{ll}\text { (a) } \overline{\mathrm{E}} & \text { (b) } \rho_{v}\end{array}$

$$
\left[\begin{array}{c}
\bar{E}=\frac{2 \sin \theta}{r^{3}} \bar{a}_{r}-\frac{\cos \theta}{r^{3}} \bar{a}_{\theta} \\
\rho_{v}=\frac{-\epsilon}{r^{4} \sin \theta} C / \mathrm{m}^{3}
\end{array}\right]
$$

6 If $\bar{D}=\frac{5}{r^{2}} \bar{a}_{r}-r^{2} \phi \sin \theta \bar{a}_{\phi} \mathrm{C} / \mathrm{m}^{2}$ for a sphere or radius a. What is ρ_{v} in the sphere

$$
\left[\rho_{v}=-r \mathrm{C} / \mathrm{m} 3\right]
$$

7 A spherical conducting shell of radius a, centered at the origin, has a potential field :

$$
V=\left\{\begin{array}{cc}
V_{o} & r \leq a \\
V_{o} \frac{a}{r} & r>a
\end{array}\right.
$$

with the zero reference at infinity .Find the stored energy.

$$
\left[W_{E}=2 \pi \epsilon V_{o}{ }^{2} a\right]
$$

8 Determine the energy stored in the cube of 2 m side and at centre lies on the origin and $V=8 x+6 y \vee$

$$
\left[W_{E}=3.54 \times 10^{-9} \mathrm{~J}\right]
$$

